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Abstract

Whenever geographic data are aggregated spatially, a decision must be made
about the spatial unit into which individual data points are grouped. In anal-
yses of the real estate market, properties are grouped in this way into housing
submarkets: sections of the real estate market which share similar characteris-
tics. Typically, existing spatial units (such as administrative neighbourhoods or
districts) are used to represent these submarkets, however there is no guaran-
tee that such units align with the housing market dynamics they seek to delin-
eate. This dissertation presents a method to segment an urban area into different
spatial units based on its built form – its urban morphology. The spatial seg-
mentations produced are then assessed to determine whether they can be used
to represent housing submarkets. Besides the novel segmentations themselves,
the dissertation presents several methodological findings. Contextual characters
and the transposition of cluster labels onto simpler geometries are shown to be
key methods for ensuring spatially coherent segmentations. Segmentations are
shown to significantly vary depending on the spatial units clustered to generate
the segmentations (with regular grids performing significantly worse than units
based on buildings), and on the clustering algorithm employed.
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1
Introduction

1.1 Background

Housing submarkets are sections of the real estate market which share similar

characteristics. When defined spatially, existing spatial units (such as administra-

tive neighbourhoods) are usually employed to represent these submarkets, either

individually or through a grouping of neighbourhoods. When this approach is

used to analyse the housing market, for example when producing price indices

based on these spatial units, the end result can misrepresent the nature of the

underlying property market(s) being studied. For example, if an administra-

tive neighbourhood contains properties of significantly varying prices, the mean

price index for the area will be unrepresentative of the properties in the area

it seeks to represent.

Urbanmorphology is the study of the physical form of the built environment.

In this dissertation, amethodology is developed to partition a city (using the case

study of Barcelona) into novel spatial units based on urban morphology. These

are then assessed to determine how well they capture variation in both urban

morphology and house prices in the city, and thus their suitability to be used as

alternative spatial units to represent housing submarkets.

1



1. Introduction

When carrying out a complex multi-stage process such as the spatial seg-

mentation presented in this dissertation, there are many different parameters

which can be varied to produce different configurations of the output (in this

case the spatial segmentation generated). This dissertation will examine differ-

ing approaches to (housing submarket) spatial segmentation, paying particu-

lar attention to the effects of different base spatial units; contextual characters;

post hoc methods to simplify the segmentation geometry; and the clustering

algorithm used.

This research was undertaken in collaboration with idealista and is based in

part on previous work undertaken by Juan Ramón Selva-Royo and David Rey

at that company.

1.2 Geographical context

Although intended to be location-agnostic and usable wherever the requisite

input data is available, themethods developed over the course of this dissertation

were initially applied to the Spanish city of Barcelona, and the segmentations pre-

sented in this dissertation are of this city. The city was chosen on the recommen-

dation of idealista, and comprises several distinct urban tissues with differing

urban morphology: as such it is a good candidate for the development and as-

sessment of amethodology for spatial segmentation based on urbanmorphology.

Among these are the Ciutat Vella, the medieval old city, and the Eixample, the

19th Century grid of avenues and blocks.

1.3 Aims

The dissertation has three primary aims:

• Develop a methodology to partition an urban area into different spatial

units of homogeneous urban morphology (‘urban tissues’).

2
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1. Introduction

• Assess the degree to which these novel spatial units capture variation in

house prices, and therefore their suitability to use as spatial housing sub-

markets.

• Appraise the effects of a range of methodological parameters on the seg-

mentations produced when following the general method presented in the

dissertation.

1.4 Structure

This Introduction has introduced the study, outlining the context, motivations,

and key aims of the research. The following Literature Review summarises past

research in areas relevant to the present study. The Methodology describes the

methods used to complete the analyses and to obtain the results of this research.

The Results chapter reports the key results of the research presented in this dis-

sertation, which are discussed in greater depth in the Discussion, explaining

these results and their implications. Finally, the Conclusion summarises the

dissertation’s findings and offers potential avenues for further research.

3



2
Literature Review

Beginning with a discussion of the analytical issues which motivate the study,

the chapter goes on to outline several key ways in which housing submarkets

have been spatially delineated. The development of urban morphology is then

summarised, focussing particularly on the ways in which recent data, technolog-

ical, and methodological advances have allowed concepts from the field to be

operationalised in (computational) quantitative research. Synthesising the two

preceding themes, the key ways in which urban morphology has been used to

partition space are outlined. The chapter ends with a review of possible gaps in

the literature which the present research could seek to fill.

2.1 The pitfalls of partitioning space

A core tool of geographic analysis is the aggregation of observations based on

where they happen. In this way, a better understanding can be gained of phe-

nomena that vary over space, be that the distribution of poverty in a city, the

spread of a pandemic, or the composition of housing submarkets.

A persistent concern in geographic analysis is that when aggregating obser-

vations at certain locations into geographical units, the trends observed (and the

results of any subsequent analyses based on these) will change depending on

4



2. Literature Review

the spatial unit into which observations are aggregated. This issue was first de-

scribed as the “Modifiable Areal Unit Problem” (MAUP) by Openshaw and Tay-

lor (1979), and has since been a perennial subject of geographical scrutiny (Open-

shaw, 1984; Fotheringham andWong, 1991; Tranmer and Steel, 2001; Duque et al.,

2018). While several proposals have been made to minimise its effects (King,

1997; Nakaya, 2000; Holt et al., 1996) it remains the case that “there is no single

bestmethod that totally avoids theMAUPas long as data aggregation is involved”

(Zhang and Kukadia, 2005, 77). For this reason, it is imperative that when aggre-

gating spatial data, researchers are aware of the MAUP and the possible effects

it may have on any conclusions they draw.

One approach to somewhat moderating the impact of the MAUP is to use

a method which is not built on the aggregation of spatial units. To give one

such example, Calafiore et al. (2021) generate functional neighbourhoods from

user origin-destination flow data from Foursquare check-ins, using a spatially

weighted community detection algorithm adopted from network science. While

consequent analyses employing the resultant spatial units would be as suscepti-

ble to the MAUP as any other choice of spatial units, the method avoids the need

to choose a base spatial unit from which to build the segmentations.

2.1.1 Spatial housing submarkets

While the term is defined and used in various ways such that “no single defini-

tion of a housing submarket exists” (Rae, 2015, 457), a housing submarket can

generally be considered to be a set of dwellings sharing similar characteristics

(Bourassa et al., 1999), often defined with a spatial contiguity constraint such

that there are no multi-part spatial housing submarkets; a line can be drawn on

the submarketmap linking any dwelling to any other within the same submarket

without crossing into a different submarket.

Past research operationalises the concept in a range of ways. Early works use

existing divisions: for example Palm (1978) partitions the San Francisco-Oakland

region into housing submarkets based on the districts covered by each of the

5



2. Literature Review

seventeen Boards of Realtors in the region. Another approach is to make use of

convenient existing administrative spatial units, as done by Adair et al. (1996),

who determine spatial housing submarkets by amalgamating the existing ward

divisions of Belfast into larger groupings with common characteristics.

The turn of the millennium saw the development of a range of quantitative

techniques for determining the spatial bounds of housing submarkets, a ‘mi-

crostructural turn’ in housing analysis (Smith andMunro, 2013, 2) resulting from

the increased availability of “large micro-datasets that contain geo-coded details

of dwellings, their characteristics and values” (Keskin and Watkins, 2017, 1447)

and a concomitant advancement in the methods available to analyse these data.

Among these quantitative techniques, Bourassa et al. (1999) produce one

of the first examples of cluster-based housing submarket spatial segmentation,

defining spatial housing submarkets in Sydney and Melbourne using both k-

means andWard’s method for agglomerative clustering. Kauko et al. (2002) use

two neural network techniques to identify housing submarkets inHelsinki, while

Helbich et al. (2013) present “a data-driven spatial regionalization framework

for housing market segmentation” (ibid, 885) incorporating several techniques

including multiscale geographically weighted regression, principal component

analysis, k-means, Spatial ’K’luster Analysis by Tree Edge Removal (SKATER),

and various checks of predictive accuracy.

2.2 Urban morphology

Urban morphology is the study of the physical form of cities, towns and villages.

While the various definitions of urbanmorphology—Oliveira (2016) cites nine—

differ in their details, each considers the elements of which cities are composed,

particularly their “urban tissues, streets (and squares), urban plots, [and] build-

ings” (Oliveira, 2016, 2). By providing a descriptive language to discuss the struc-

ture of built environments, urbanmorphology presents a set of tools to help ‘read’

6
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urban forms, and thereby understand the effects of differing urban forms on a

wide array of social, economic and environmental processes (Kropf, 2017, 10).

Urbanmorphology has been associatedwith (and hence used to understand)

many different factors which vary spatially in built environments. A typical

application of urbanmorphology is as a tool to understand the historical develop-

ment of a town or city, such as Baker’s (2009) study of the historical townscape

of Hereford. Other applications look at the relationship between urban form

and social issues, such as poverty (Vaughan et al., 2005) or public health (Sarkar,

2013); environmental concerns like heat-energy demand and efficiency (Rode

et al., 2014); and concerns with both social and environmental components, such

as the effect of urban morphology on birdsong loudness and the visibility of

green areas (Hao et al., 2015).

2.2.1 Urban morphometrics

Traditional urban morphological research has primarily made use of qualitative

methods, using records such as historical and current maps and photographs of

the area in question to determine the nature of a settlement’s morphology at a

given point in time. These methods lend themselves to detailed examinations

of the particular historico-geographical context of a given case study settlement,

but are labour- and time-intensive, and cannot be easily scaled to larger geo-

graphical areas.

In recent years, an increasing availability of both appropriate data and tech-

nological tools has made possible a proliferation of quantitative urban morphol-

ogy, employing an accompanying growing body of methodologies. This mirrors

broader trends in geography (Arribas-Bel, 2014;Wolf andKnaap, 2019; Singleton

and Arribas-Bel, 2021) and indeed in social science more broadly (Lazer and

Radford, 2017), where more and more research is employing methods drawn

from data science (and the methodological traditions that precede the term; see

Donoho, 2017).

7



2. Literature Review

Among the first explicit contributions to the nascentmethodology-cum-subfield

of urban morphometrics (UMM), Dibble (2016) seeks to establish “a systematic,

quantitative and comprehensive process of measuring, defining and classifying

urban form” (ibid, vi). Since then, an expanding body of urban morphometric

research has been published (Dibble et al., 2019; Araldi and Fusco, 2019; Bobkova

et al., 2021), quantitatively examining urban form in a number of contexts and

from a number of perspectives.

In this landscape of novel methodological approaches to quantitative urban

morphology, Fleischmann et al. (2020b) survey a wide range of such studies and

find a catalogue of cases in which the same term is used in multiple quantitative

studies of urbanmorphology, but with differentmeanings in different studies. In

an effort to overcome these terminological inconsistencies, they establish “a sys-

tematic and comprehensive framework to classify urban form characters” (ibid,

1). To this end, they introduce the Index of Elements, a terminological framework

which distinguishes the Index of an urban form character (what is being mea-

sured, for example ‘area’ or ‘number of neighbours’) and the Element of urban

form being measured (for example ‘building’ or ‘block’).

In the interest of minimising this work’s contribution to the aforementioned

terminological inconsistencies, this dissertation generally adopts this proposed

terminological framework, and in all cases seeks to clearly define the key terms

used throughout. In addition to the use of ‘elements’ to describe the element of

urban form being measured, henceforth:

• ‘character’ is used to refer to a measurable “characteristic . . . of one kind

of urban form that distinguishes it from another kind” (ibid, 2);

• ‘tessellation cell’ refers to the spatial unit produced in the process of mor-

phological or enclosed tessellation (described in further detail in the next

chapter);

• ‘urban tissue’ refers to “a distinct area of a settlement in all three dimen-

sions, characterised by a unique combination of streets, blocks/plot series,

8
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plots, buildings, structures andmaterials and usually the result of a distinct

process of formation at a particular time or period” (Kropf, 2017, 89);

• ‘segmentation’ refers a) to the way in which an urban area is divided into

spatial units through the clustering methodology described in the next

chapter; and b) to the output of such a methodology, as in “this segmenta-

tion clearly delineates the Ciutat Vella”;

• ‘clustering’ refers more narrowly to the part of the methodology in which

base spatial units are assigned to a group (‘assigned a cluster label’) on the

basis of the statistical similarity of the characters of each spatial unit.

Past research has laid the groundwork for this study by identifying a wide

range of ways in which urban morphology can be measured, and consequently

by developing the computational tools to calculate these morphometric charac-

ters in a way which is scalable to a large urban area (Fleischmann et al., 2021a).

2.2.2 Defining the spatial unit

Fundamental to a spatial segmentation produced using a clustering methodol-

ogy (be that according to demography, morphology, or any other character or

set thereof) is the smallest spatial unit used. Dibble et al. (2015) define this as

the Operational Taxonomic Unit (OTU), borrowing the term used in the biolog-

ical field of morphometrics to describe the smallest unit used when comparing

organisms’ characteristics in the process of taxonomic classification. In biology,

the OTU is almost always the individual organism, but in urban morphology

the choice of OTU is less straightforward.

In his seminal study of the urban morphology of Alnwick, Northumberland,

Conzen (1960) refers to the smallest unit of analysis as a ‘plot’, “a unit of land

use . . . physically defined by boundaries on or above ground” (Conzen, 1960, 5).

These plots are then grouped into ‘plan-units’: morphologically distinct areas

of the town, of which Conzen identifies a taxonomy of 13 major and 49 sub-

types. The use of plots has been criticised, however, as “more or less ambiguous”

9
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(Kropf, 1997, 1), as the multiple definitions with which the term is used give

rise to different—and sometimes contradictory—plot geometries (Kropf, 2018).

Mehaffy et al. (2010) study urban morphology through the structure of ‘sanctu-

ary areas’, defined as “the area between major thoroughfares” (ibid, 23). Other

studies have sought to somewhat circumvent the problem of determining the

smallest spatial unit on the basis of current use by instead using an arbitrary unit,

such as a regular grid (Jochem et al., 2021; Mercadé Aloy et al., 2018; Rode et al.,

2014).

Seeking a consistent anduniversally applicable base spatial unit, Fleischmann

et al. (2020a) propose ‘morphological tessellation’ (MT) as amethod for deriving

such a unit for use in urban morphometrics. Using only building footprints, the

methodusesVoronoi tessellation to derive the ‘morphological cell’, an alternative

to the plot as traditionally conceived in studies of urbanmorphology. Building on

this morphological tessellation, Arribas-Bel and Fleischmann (2021) introduce

‘enclosed tessellation’ (ET) as an alternative spatial unit. In addition to mor-

phological tessellation’s use of building footprints, ET incorporates additional

barriers to delineate some cell boundaries such as roads, rivers, and railways.

2.2.3 Approaches to urban morphological spatial segmentation

Within urban morphometric research there are multiple approaches to quanti-

tatively partitioning (usually urban) spaces on the basis of their morphology.

Both approaches discussed below first divide space into the base spatial units

discussed above, before grouping these on the basis ofmorphology to formnovel

segmentations.

Inmethodologies using supervisedmachine learning techniques, the researcher

must first define the classes intowhich theywish the study area to be categorised.

Each base spatial unit is then assigned to one of these existing classes based on its

statistical similarity (in the characters of interest) to each class. As an example,

Colaninno et al. (2011) present amethod to classify Barcelona into sevendifferent

morphology-based typologies.

10
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Conversely, methodologies using unsupervisedmachine learning techniques,

the prevailing approach to urban morphological spatial segmentation, do not

require this a priori specification of classes into which the base spatial units

should be grouped. Examples of this approach include work by Fleischmann

et al. (2021b).

2.3 Research gaps

As presented above, urban morphometrics is an actively developing field of re-

search, and as such there is a limited literature presenting quantitative method-

ologies for producing urban morphology based spatial segmentations, and as-

sessing the methodological parameters which affect these segmentations. In par-

ticular, to date no research has incorporated urbanmorphology into a delineation

of housing submarkets.

More generally, there is a need for spatial unitswhich reflect the heterogeneity

of variables as they are distributed across urban spaces. Because urban mor-

phology is putatively correlated with a wide range of spatially varying factors

(as outlined above), spatial units which reflect a city’s urban morphology could

be successful at capturing the variation in a wide range of different variables.

This may offer onemeans to reduce the deleterious effects of theMAUP incurred

when arbitrary administrative geographies are used to aggregate spatial data.
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Methodology

This chapter describes the methods used to complete the analyses and to obtain

the results of this research. First the general process followed to generate spatial

segmentations based on urban morphology is described, before the specific dif-

ferences between seven different particular segmentations and the methodology

used to compare these are each set out.

The aim of the spatial segmentation process is to partition a city into areas

with similar urban morphology. To do this, various components of urban mor-

phology (‘characters’) are measured at a small scale throughout the city. The

‘base spatial unit’ is the small-scale area at which these characters are (generally)

measured and reported. The units with similar values for these morphometric

characters are then grouped (‘clustered’), thereby aggregating the base spatial

units into larger areas with similar urban morphology.

3.1 Base spatial units

In the process of constructing each spatial segmentation, the urban area is first

divided into many small spatial units (the OTU as discussed in the previous

chapter). These are then used as the building blocks fromwhich the consequent

classification of urban space is constructed. When these base spatial units are

12
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changed, the ways in which urban morphology is measured and clustered are

changed and thus the resultant spatial segmentations change.

3.1.1 Morphological tessellation

As discussed in the previous chapter, morphological tessellation uses the build-

ing footprints to generate a large number of fine-grain spatial units suitable for

measuring features of urbanmorphology, consequently clustering these to create

segmentations which reflect different urban tissues.

The spatial units created (MT cells) are produced by generatingVoronoi poly-

gons around each building, thereby exhaustively dividing the space in question

according to the nearest building to any given point. In this dissertation this pro-

cess is implemented in Python using the momepy package (Fleischmann, 2019).

Because of theminimal data requirement (the only data required are building

footprints and the boundary of the area in which to generate the tessellation),

MT can be used in a wide range of geographical contexts. For example, MT

cells could be generated using building footprints derived purely from satellite

or aerial imagery.

3.1.1.1 Data: buildings from the Spanish Cadastre

The buildings used to generate tessellation cells are taken from open data pro-

vided by the Spanish Cadastre (Dirección General del Catastro), an administrative

registry which records the physical and legal characteristics of every property in

Spain. Because of this administrative purpose and governmental mandate, the

dataset has near-complete coverage at the national level. All unprotected data for

each property can be downloaded free of charge, either directly from the Cadas-

tre website or through anAPI or tool such as the Spanish Inspire Catastral Down-

loader plugin for QGIS (Soriano, 2021). The data provide detailed information

about each building, including the building’s exact location, year of construction,

height, footprint, and the number of residential units within the building.
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3. Methodology

These data have beenused in previous geographic data science research: Arribas-

Bel et al. (2019) used them to delineate improved boundaries for urban areas,

while Carpio-Pinedo et al. (2021) used the data to map land use mix as ‘walk-

able trips’. Because the dataset is formulated in accordance with the European

INSPIRE (Infrastructure for Spatial Information in the European Community)

directive, replicability studies could be relatively straightforward for other Euro-

pean countries with equivalent data.

The data are provided as three different datasets: Cadastral Parcels (CP)

describe “the basic unit of ownership” (i.e. the plot) irrespective of whether it

has been built upon; Addresses (AD) provides identifiers for the location of each

property; and Buildings (BU) gives geospatial information about each building.

3.1.2 Enclosed tessellation

Enclosed tessellation (ET) is an alternative to morphological tessellation which

makes use of road network data in addition to building footprints.

The first step in creating the ET is to generate enclosures from the street net-

work and city boundary. These areas are similar to the Sanctuary Area used in

previous studies of urban form (Mehaffy et al., 2010; Dibble et al., 2019), albeit

they are constructed of all drivable roads and not solely of main roads. Within

each of these enclosures, Voronoi polygons are generated around each building,

partitioning the space within each enclosure according to the nearest building

to create enclosed tessellation cells. Like MT, the ET cells were generated in

Python using momepy.

Because this is ultimately a segmentation of housing submarkets, ET cells

containing no buildings are dropped at this stage. This means that unlike MT,

the segmentation is not spatially exhaustive: certain areas without buildings

are excluded from the final classification (commonly roundabouts and the cen-

tral reservations of dual carriageways). This difference is discussed at greater

length in the Discussion. Figure 3.1 shows the process of generating enclosed

tessellation cells.
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Figure 3.1: Generating enclosed tessellation: input buildings (dark green) and roads
(red) data; plotting Voronoi polygons around each building within the enclosures
formed by the roads; final tessellation.

3.1.2.1 Data: roads from OpenStreetMap

The roadnetwork is taken from the collaborative onlineOpenStreetMap (OSM)

project. OSM is a relatively novel source of volunteered geographic informa-

tion, but since its 2004 inception has already been used in a wide range of ge-

ographical research (Jokar Arsanjani et al., 2015). Although there have been

questions raised about the quality and completeness of crowdsourced geospatial

data (Mooney and Minghini, 2017), studies of OSM’s road network have found

a high level of completeness (Barrington-Leigh and Millard-Ball, 2017) and so

this is unlikely to be a problem, particularly in prominent urban areas in an

economically developed country such as Spain.

The OSMnx Python package (Boeing, 2017) is used to query the Overpass

OSM application programming interface (API) and return all roads marked as

drivable by general vehicular traffic1 within a 100metre buffer around the bound-

ary of the city.

1Specifically, the function used to return ‘drivable’ roads removes all routes tagged
as abandoned, bridleway, bus_guideway, construction, corridor, cycleway, elevator,
escalator, footway, path, pedestrian, planned, platform, proposed, raceway, service,
steps, track, alley, driveway, emergency_access, parking, parking_aisle, or private;
motor_vehicle = no, and motorcar = no. See the source code for further detail.
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3.1.3 Blocks

The block is a similar unit to the enclosures used in the process of generating

ET cells, being delineated by the street network provided. They differ from en-

closures in that blocks are built back up from ET cells, and so do not include

those spaces surrounded by streets but not containing any building. Blocks are

again generated using momepy.

3.1.4 H3

H3 (Brodsky, 2018) is a hierarchical, hexagonal, global grid system initially de-

veloped by Uber Technologies to process and visualise the large amounts of spa-

tial data they collect. It completely partitions the surface of the Earth into hexagons

derived from a projection of the globe as a spherical icosahedron. For this reason

each hexagonal H3 cell has approximately the same area as any other at the

same resolution; the H3 grid does not suffer from the same problems of latitude-

dependent size distortion a square grid on aMercator projectionwould have. H3

was implemented using the h3 Python bindings. A cell resolution of 10 is used, at

which level each cell has an edge length of 65.9 metres and an area of 15,047.5 m2.

Figure 3.3 compares each of the four base spatial units employed in the disser-

tation.

3.2 Measuring morphometric characters

The characters used as inputs when carrying out spatial segmentation are the

data which determine the ultimate segmentations, and so it is imperative that

these successfully capture the desired features: in this study, the morphology of

an area.

In clusterings which use the full set of characters (see Table 3.1) there are

three different elements on which characters are measured: buildings, tessella-

tion cells, and blocks. Some characters—such as the area of the element—can be

measured on all three elements, while others—such as the coverage area ratio,
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Figure 3.2: H3 partitions the globe into (mostly) hexagonal cells. Source: Brodsky
(2018).

which reports the proportion of a tessellation cell covered by a building—can

only be measured on (a) certain element(s).

3.2.0.1 Data: building information from the Spanish Cadastre; roads from
OpenStreetMap

The two data sources used to generate morphometric characters are those

already introduced: the Spanish cadastral dataset, and the drivable roads from

OSM.

The cadastral dataset providesmultiple forms of geospatial information about

each building: Building describes the geometry and attributes of each building,

while the more granular BuildingPart gives separate information about the con-

stituent parts of buildings, including the height of each part. This height (used to

calculate severalmorphometric characters) is derived from the numberOfFloorsAboveGround

attribute, which is multiplied by three to approximate a height value in metres

(assuming that each floor is approximately three metres tall). As the attribute is

only provided for BuildingParts, a spatially weighted average of the heights of
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Figure 3.3: Different base spatial units: morphological tessellation, enclosed tessellation,
blocks, and H3.

each building’s constituent parts is calculated to produce height information for

each building. Before this was done, the numberOfFloorsAboveGround attribute

was manually inspected and corrected in certain cases: for example some build-

ing parts reported a value of 106, despite the tallest building in Barcelona only

having 44 floors.

3.2.1 Primary characters

Each primary character quantifies an aspect of urban morphology with respect

to a particular element (as described above). As wide a range of characters as
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reasonably possible is initially calculated in order to capture as many different

aspects of urban form as possible. The primary characters are calculated using

momepy. The initial set of characters is detailed in Table 3.1. The character de-

scriptions are primarily adapted from Fleischmann (2021) Fleischmann (2021)

and momepy documentation.

3.2.2 Selecting characters

The information provided by each character must vary spatially, that is to say

that if the values of a character are randomly distributed throughout a city or

do not vary at all, the character is not useful in a spatial segmentation, which is

premised on dividing the city based on the ways in which given input values

vary over space. For this reason, the spatial autocorrelation of each character

throughout the study area is assessed by calculating the Global Moran’s I. If this

is not statistically significant, the character is not spatially autocorrelated and

therefore is discarded. All characters used in the segmentationswere found to ex-

hibit significant spatial autocorrelation (positive Moran’s I value and p < 0.005).

A degree of correlation is expected between certain characters, but if multiple

characters are highly correlated this may be indicative of two or more charac-

ters representing essentially the same concept, thus not providing a significant

amount of additional information and skewing the results of the clustering. For

this reason, the degree of correlation between each of the characters is inspected.

As the distributions of values in each character is not necessarily normal, Spear-

man’s rank correlation coefficient is computed to quantify the degree to which

each character is correlated to each other character. Figure 3.4 provides an exam-

ple of this process for the characters generated on ET cells.

On the basis of Figure 3.4, four characters were removed on the basis of ex-

hibiting too high adegree of collinearity: blg_CentroidCornersMean, blg_Perimeter,

blk_Perimeter, and blk_CompactnessWeightedAxis.
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Table 3.1: Initial set of urban morphometric characters. Those included in the H3
clustering are indicated with ’*’.

Variable name Index Element Description H3
blg_Height Height Building Height of building *
blg_FloorArea Floor area Building Floor area of building *
blg_Area Area Building Area of building *
blg_Volume Volume Building Volume of building *
blg_Perimeter Perimeter Building Perimeter of building *
blg_CourtyardArea Courtyard area Building Area of holes in buildings (aka

courtyards)
*

blg_FormFactor Form factor Building Compactness of building *
blg_VolumeFacadeRatio Volume to façade ratio Building Ratio of building volume to area of the

façade, a proxy for volumetric
compactness

*

blg_CircularCompactness Circular compactness Building Ratio of area of building’s enclosing
circle to its area

*

blg_Corners Corners Building Number of corners the building has *
blg_Squareness Squareness Building Squareness of building *
blg_EquivalentRectangularIndex Equivalent rectangular Index Building Deviation of building from an

equivalent rectangle
*

blg_Elongation Elongation Building Ratio of shorter to longer dimension of
the minimum bounding rectangle, a
proxy for the deviation of the shape
from a square

*

blg_CentroidCornersMean Centroid to corner mean Building Mean distance from building centroid to
its corners

*

blg_CentroidCornersSD Centroid to corner standard
deviation

Building Standard deviation of distance from
building centroid to its corners

*

blg_Orientation Orientation Building Orientation of the building *
blg_SharedWallsRatio Shared walls ratio Building Ratio of shared walls to total perimeter *
blg_CellAlignment Cell alignment Building Calculate the difference between cell

orientation and orientation of building
tess_Orientation Orientation Tessellation cell Orientation of the tessellation cell

(calculated via the bounding rectangle)
tess_LongestAxisLength Longest axis length Tessellation cell Length of the longest axis of tessellation

cell
tess_Area Area Tessellation cell Area of tessellation cell
tess_CircularCompactness Circular compactness Tessellation cell Ratio of area of tessellation cell’s

enclosing circle to its area
tess_EquivalentRectangularIndex Equivalent rectangular Index Tessellation cell Deviation of tessellation cell from an

equivalent rectangle
tess_WeightedNeighbours Weighted neighbours Tessellation cell Number of tessellation cell neighbours

divided by the cell perimeter
tess_CoverageAreaRatio Coverage area ratio Tessellation cell Proportion of tessellation cell covered by

a building
tess_FloorAreaRatio Floor area ratio Tessellation cell Ratio of floor area to tessellation cell area
blk_Area Area Block Area of block
blk_Perimeter Perimeter Block Perimeter of block
blk_CircularCompactness Circular compactness Block Ratio of area of block’s enclosing circle

to area of block
blk_EquivalentRectangularIndex Equivalent rectangular Index Block Deviation of block from an equivalent

rectangle
blk_CompactnessWeightedAxis Compactness-weighted axis Block Compactness-weighted axis of block, a

proxy of permeability of an area
blk_Orientation Orientation Block Orientation of the block (calculated via

its bounding rectangle)
blk_WeightedNeighbours Weighted neighbours Block Number of block neighbours divided by

the block perimeter
blk_WeightedBuildings Weighted buildings Block Number of buildings within the block

divided by the block area
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Figure 3.4: Correlation matrix of morphometric characters.

3.2.3 Contextual characters

As there is no explicitly spatial input to the clustering algorithm used (for all

but one of the segmentations), there is no guarantee that any clusters generated

from purely the primary characters will form spatially contiguous areas (that is,

the eventual spatial segmentations). Furthermore, since the base units are small

(particularly in the case of ET/MT cells, which only delineate the area around a

single building) they cannot uniquely capture the morphology of the urban tis-
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Figure 3.5: An example of the topological neighbours used to create contextual charac-
ters for a tessellation cell: the darkest green is the original cell and each shade lighter
represents one extra degree of topological distance from this cell.

sue to which they belong. The use of spatial weights to incorporate information

about the neighbouring spatial units therefore expands the geographic extent

of morphometric information supplied while preserving the spatial granularity

provided by the base units in a way which would not be achieved by simply

aggregating the characters to less granular spatial units.

When used with ET/MT cells, the contextual characters also reflect how hu-

mans perceive (urban) space. While the measured geographic distance may be

equal, a person’s mental conception of the distance between two points will be

different if the area between these is a built environment with a high density

of streets and buildings, compared to an open landscape with fewer roads or

features. Using topological steps based on ET/MT cells can therefore be seen as

a more theoretically sound reflection of the relationship between different ele-

ments than a simple distance buffer or k nearest neighbours, and a better way to

describe themorphology of the vicinity of a given cell (Fleischmann et al., 2020a).

To generate contextual characters, a spatial weights matrix is created for the

base spatial unit: this records which cells are neighbours of a given cell. The

22



3. Methodology

definition of ‘neighbour’ in this context depends on the number of topological

steps stipulated when computing the spatial weights (the order of contiguity,

k). If k = 1, queen contiguity-based spatial weights are used such that any cell

sharing a common edge or vertex is counted as a neighbour. If k ≤ 2, the spatial

weight will define as a ‘neighbour’ both the cells included as neighbours in the

k= 1 criterion and their neighbours according to the same criterion, and so on such

that as k increases so does the maximum number of topological steps between

a cell and its ‘neighbour’ (see Figure 3.5).

For each character and each cell, the interquartile mean (IQM) is then calcu-

lated from that character’s values in all cells defined as a neighbour in the spatial

weights matrix provided. The IQM is calculated by taking the mean average of

all values between the lower and upper quartile when ordered, and as such is

less affected by outliers than a simple mean of all values.

3.3 Clustering

In all but one segmentations presented in this dissertation, the clustering of cells

into urban tissues was carried out using a Gaussian Mixture Model (GMM), a

probabilistic derivative of k-means. GMM models the distribution of each di-

mension (in our case each (contextual) character) of each cluster as a Gaus-

sian distribution, rather than using k-means’ simpler distance-basedmodel. This

allows clusters to have different shapes (in the hyperspace in which they are

clustered), for instance ellipses, rather than classifying each point according to

its nearest cluster centroid (as measured by Euclidean distance in n-dimensional

hyperspace, where n = the number of characters). The GMM is implemented

with the GaussianMixture algorithm from the scikit-learn Python package (Pe-

dregosa et al., 2011).

Agglomerative Clustering is an alternative clustering algorithm, employed

because it allows the incorporation of a spatial constraint; it can be stipulated that
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when mapped, the clusters generated must all be spatially contiguous2. Unlike

GMM, Agglomerative Clustering requires a spatial weights matrix: this allows

it to operationalise the spatial constraint by providing a definition of which cells

are and are not counted as neighbours.

3.3.1 Determining n

GMM requires the number of clusters (n) to be specified a priori, a decision

which must satisfy both statistical and theoretical considerations.

An elbow plot is a typical method used to determine the appropriate number

of clusters in an unsupervised clustering of this nature. The x-axis plots the

number of clusters, while the y-axis charts a metric quantifying the goodness of

fit of a clusteringwith n clusters. The Bayesian InformationCriterion (BIC) is one

suchmeasure, providing a quantification of the clustering fit, penalising a higher

number of clusters in order to deter overfitting. Figure 3.6 shows an example

elbow plot charting the number of clusters against the BIC for a segmentation

using ET cellswith contextual characters from 5th order spatial weights. The plot

serves to illustrate the diminishing returns of improvements in the clustering fit

as n increases, and therefore acts as a guide to choosing the ‘optimal’ n.

It is important that diagnostic statistics and methods such as the BIC not be

blindly followed and seen to unambiguously indicate the optimal n. While there

may be many statistically distinct clusters may be distinguished, these may not

reflect real/clear differences in urban morphology.

3.4 Comparing different segmentations

Manydifferent segmentationswere carried out varyingdifferent parameters. Seven

of these resultant spatial segmentations are reported below: these have been se-
2Except, that is, in cases where the boundary of the urban area itself contains ‘islands’ (literal

or figurative). As an example, the spatial units which comprise the island at the port of Barcelona
(a cruise terminal connected by bridge to themainland) are assigned to the same cluster as much
of themainland fromwhich they are separated bywater (thus not fulfilling the spatial contiguity
criteria).
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Figure 3.6: An elbow plot for a segmentation with ET cells and contextual characters
from 5th order contiguity weights. The shaded area represents the 95% confidence
interval.

lected to showcase a range of differing possible approaches to certain elements of

the methodology, and the effects these methodological changes have on the seg-

mentations generated. Figure 3.7 presents a graphical comparison of themethod-

ologies used to generate each of these segmentations.

3.4.0.1 Morphological tessellation

This segmentation generates all characters in Table 3.1 using MT cells. 5th-

order contiguity spatial weights are then used to compute the IQM for each
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character in the neighbourhood of each MT cell. These values are used as inputs

to a GMM clustering to generate the segmentation.

3.4.0.2 Enclosed tessellation

This segmentation is identical to themorphological tessellation segmentation,

save for its use of enclosed tessellation cells in place ofmorphological tessellation

cells. While seemingly minor, carrying out a segmentation with this as the sole

difference allows any differences between the two spatial units when carrying

out an UMM-based clustering to be methodically examined.

ET transposed to block geometry As the ET cells are small geometries which

may for example separate buildings sharing a wall, any segmentation using this

geometry may have ‘messy’ borders between clusters, even when using high-

order contiguityweights. To reduce this issue, this segmentation takes the output

from the above enclosed tessellation segmentation and classifies each block ac-

cording to the cluster label which takes up the greatest proportion of the block’s

area. This is done using the area_join function in the tobler package in Python

(Knaap et al., 2021).

ET transposed to H3 geometry As with the above transposition to block geom-

etry, but with the level 10 H3 cells.

3.4.0.3 H3 ‘basic’

The ‘basic’ H3 clustering entirely eschews the use of ET or MT cells, instead

only calculating the characters marked as ‘*’ in Table 3.1, all of which have the

building as their element. The value of each character in each H3 cell is then

calculated from a spatiallyweighted average of the values of the buildingswithin

the cell, computed using tobler’s area_interpolate function.
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3.4.0.4 H3 with ET characters

This segmentation uses the full set of characters generated using ET cells,

transposed onto the H3 geometry. A first order contiguity weight (using the

H3 cell as the unit) is then used to create contextual characters, which are used

as the input to a GMM clustering to generate the final segmentation.

3.4.0.5 Spatially constrained MT

This segmentation uses the full set of characters generated usingMT cells, but

substitutes the GMM algorithm for scikit-learn’s AgglomerativeClustering re-

gionalisation algorithm. This stipulates that all clustersmust be spatially contigu-

ous.

3.5 Assessing segmentations

For each segmentation, two distinct—albeit related—factors should be assessed:

how well the segmentation captures differences in urban form types; and how

well the segmentation captures the variation in other variables of potential inter-

est, such as property prices.

3.5.1 Relation to urban morphology

The former of these assessments is significantly more challenging, not lending

itself to any obvious quantitative formof validation and hence requiring a greater

degree of subjective judgement. Past studies which segment cities on the basis

of their urban morphology use “visual observation and personal knowledge of

the city” (Fleischmann et al., 2021b, 20) to assess the validity of their segmen-

tations, but this is challenging in cases when the author does not have this per-

sonal knowledge of the city in question (as is the case in this dissertation). In

lieu of this, each segmentation is mapped over the outlines of the city’s blocks

(as given by the cadastral data), allowing a visual comparison of the segmen-

tation to underlying urban structure. Note that these outlines should not be
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Figure 3.7: A flowchart showing the methodological differences in the construction of
each segmentation.
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mistaken for those of the base spatial units that have been clustered to produce

the segmentations.

3.5.2 Relation to property prices

Fleischmann et al. (2021b) also validate their clustering by measuring the cor-

relation with other urban dynamics expected to correlate (the age of buildings,

land use, and qualitative classification of urban form in official planning docu-

ments). This principle of validation by comparison with a correlate is echoed

in the following section, which assesses the degree to which the segmentations

produced capture variation in property prices across a city.

3.5.2.1 Data: house price indices

In addition to the cadastral dataset, idealista provide their own proprietary

real estate data, which is used to assess the utility of the segmentations generated

as proxies for housing submarkets. The data provide the average sale price of all

properties within a cadastral parcel, and are sourced from idealista’s online real

estate marketplace listings. Figure 3.8 shows the coverage of the house price in-

dices data used: those cadastral parcels with values for the average sale property

price are blue, while those without this information are red.

When making this evaluation, clarity about the spatial unit actually being

assessed is essential. In all of the novel segmentations reported, there is a dis-

tinction between the types identified, and the distinct polygons into which the city

is partitioned. In the following analysis, the types describe each of the numbered

clusters (8 of them in most segmentations) as integrated units of comparison,

irrespective of their geographical location. Thismeans that two areas on opposite

sides of a city—both classified as having the same morphological type and thus

assigned to the same cluster—will be counted as belonging to the same group.

Conversely, polygons treat each individual polygon in the segmentation as a

separate group, such that two non-contiguous areas with the same initial clus-
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Figure 3.8: Amap of the spatial coverage of the house price indices data in Barcelona.

ter label will be counted as belonging to separate groups, and hence be treated

separately when measuring within-group variation3.

For both spatial units, (types and polygons), the relationship between each

segmentation and variation in property prices is quantified using the quartile

coefficient of dispersion [QCoD; Zwillinger and Kokoska (1999), 17]. As the

name suggests, this metric measures the dispersion of values within each unit,

specifically that of the CP-level idealista house sale price indices described above.

A lower QCoD for a type/polygon, and a lower average QCoD for all the

types/polygons within a segmentation is therefore indicative of units which con-

tain more similar properties, and therefore can be seen to better represent hous-

ing submarkets. The QCoD is calculated as:
3In GIS terms, types can be thought of as MultiPolygons or a multipart feature: they may

consist of several distinct geometries; while polygons can be thought of as the Polygons resulting
from an ‘explode’ operation on a multipart feature: each polygon is one spatially contiguous
geometry.
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QCoD = Q3 − Q1

Q3 + Q1

Where Q1 and Q3 denote the lower and upper quartile values, respectively.

Its use of the quartile values ensures that the final statistic is not skewed by ex-

treme outliers, such as one very expensive property in an otherwise inexpensive

neighbourhood, while still communicating the spread of values within a given

type or polygon. As some of the individual polygons will comprise only very

small areas (as discussed in the next chapter), polygons containing fewer than

ten cadastral parcels with attached house price data are excluded from analyses

which calculate and report the polygon-level QCoD.

In addition to the types and polygons from each of the seven segmentations,

the QCoD is also computed for existing spatial segmentations which may be

used to represent spatial housing submarkets, allowing a comparison of the novel

segmentations to existing spatial units. These existing spatial units are:

1. The neighbourhoods are Barcelona’s 73 barris (Catalan) / barrios (Span-

ish).

2. The districts are the 10 districtes municipals (Catalan) / distritos municipales

(Spanish) into which Barcelona is divided.

3. The ‘idealista polygons’ are taken from the units currently used internally

within idealista as a bespoke spatial unit for use in analyses involving geo-

graphical aggregations of data: Barcelona contains 69 of these units.

The boundaries used for the neighbourhoods and districts are those provided

by the Ajuntament de Barcelona on the Open Data BCN website (Institut Mu-

nicipal d’Informàtica, 2017), while the idealista polygons have been provided

by the company.

Because different segmentations will produce units of different areas, which

will in turn affect the potential dispersion within these units, for each segmen-

tation the mean of the areas of types/polygons in the segmentation is reported,

along with a boxplot showing the distribution of these type/polygon areas.
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4
Results

This chapter reports the key results of the research presented in this disserta-

tion. First, the different segmentations introduced in the previous chapter are

reported, and the relationship of these to patterns of urban morphology is qual-

itatively examined. Second, the results of the quantitative evaluation of the rela-

tionship between each segmentation and house prices are reported.

Further supplementary results are reported in the Appendix.

4.1 Relationship to urban morphology

Perhaps the most intuitive way to compare the seven segmentations presented

in this dissertation is graphically. Figures 4.1 through 4.7 map the way each

segmentation partitions the city of Barcelona. While the scale of these city-level

maps limits the amount of detail which each can show, sites of particular interest

in certain segmentations are highlighted throughout the Discussion.

It should be noted that clusters have been coloured with the same colours

where a clear equivalence is perceptible (for examplewhen identified, the cluster

most closely corresponding to the Ciutat Vella is pink), but these are so coloured

for ease of comparison only and should not be taken to indicate any formal con-

nection between the clusters produced by different segmentations.
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Figure 4.1: Segmentation 1: Morphological tessellation.
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Figure 4.2: Segmentation 2: Enclosed tessellation.
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Figure 4.3: Segmentation 3: Enclosed tessellation transposed to block geometry.
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Figure 4.4: Segmentation 4: Enclosed tessellation transposed to H3 geometry.
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Figure 4.5: Segmentation 5: H3 ’basic’.
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Figure 4.6: Segmentation 6: H3 clustering using characters from enclosed tessellation.
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Figure 4.7: Segmentation 7: Spatially constrained clustering on morphological tessella-
tion cells.
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Although discussed at greater length in the next chapter, a simple initial

description of each of the segmentation maps makes clear certain key results.

The morphological tessellation segmentation (Figure 4.1) relatively success-

fully picks out certain key urban tissues, including those of theCiutat Vella and of

the Eixample, although both have clear room for improvement. For example, the

Ciutat Vella type also includes a section of the Eixample immediately to the north

of the old city, while the Eixample type excludes certain parts of the Eixample

((mis)classified as part of the pink and orange types) while also incorporating

other areas beyond the Eixample grid.

The enclosed tessellation segmentation (Figure 4.2) identifies similar overall

morphological trends to the precedingMT segmentation, but also comprises key

differences. Immediately conspicuous are the areas omitted from classification

– those enclosures not containing any buildings. The segmentation is also vis-

ibly more ‘fragmented’ than its MT counterpart, particularly in the northern

part of the city.

This fragmented nature is a motivating factor in the development of the next

two segmentations, which transpose the ET segmentation to block (Figure 4.3)

and H3 (Figure 4.4) geometries.

TheH3 ‘basic’ segmentation (Figure 4.5) tests the performance of a segmen-

tation producedwithout usingETorMT cells at anypoint. Its results leave a lot to

be desired: despite the use of contextual characters (defined with neighbouring

H3 cells), few if any of the segmentation’s types or polygons could be said to

clearly constitute distinct urban tissues.

The consequent H3 clustering using ET characters (Figure 4.6) somewhat

improves on the preceding ‘basic’ segmentation. While morphologically distinct

areas are delineated to some extent, the differentiation of different types is infe-

rior to that found in the ET or MT segmentations.

Finally, a visual inspection of the spatially constrained segmentation (Figure

4.7) immediately makes obvious the imbalance in the size of its clusters: 90.3%

of the total area is assigned to one cluster.
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4.2 Relationship to house price indices

For each segmentation, multiple metrics are calculated to measure the disper-

sion within/between the clusters generated. As discussed above, both type and

polygon1 level metrics are reported below.

In order to allowa comparison between the novel spatial segmentationsmapped

above and the existing spatial segmentations which may be used to represent

spatial housing submarkets, three of the latter are included within the compari-

son below. The neighbourhoods, districts, and idealista polygons are mapped

in Figure 4.8. This makes clear the ways in which the idealista polygons are

largely coterminous with the city’s administrative neighbourhoods, but some-

times merge these neighbourhoods, as with those which form the two orange

idealista polygons inNouBarris2; and sometimes separate these neighbourhoods

in two, as with la Marina del Prat Vermell at the very South of the city. In

other cases the geometry of the original neighbourhoods has been simplified or

otherwise altered to create the idealista polygons.

4.2.1 Type metrics

Table 4.1 reports the average Quartile Coefficient of Dispersion of the average

residential property sale price for all types, the mean of the areas of types in each

segmentation, and the number of types included in each segmentation. Also in-

cluded for each segmentation is a boxplot showing the distribution of these type

areas.

Figure 4.9 plots each type from each segmentation, comparing its area (on

the x-axis) with the QCoD of house prices within the type (on the y-axis). It

shows a definite relationship between these two variables, and for this reason

the average QCoD alone (provided in Table 4.1) is insufficient to make a fair
1As set out in the previous chapter, type describes all cells in the citywith a certain cluster label,

whereas polygons refer to the separate geographies of contiguous cells with a certain cluster label.
2Ciutat Meridiana, Vallbona, and Torre Baró in the North of the district; and Can Peguera and

el Turó de la Peira in the South.

41



4. Results

Figure 4.8: Existing spatial units: neighbourhoods, districts, and idealista polygons in
Barcelona.
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Table 4.1: Average type values for each segmentation.

Type area (km2)
Segmentation Mean QCoD Mean Distribution Number of units

Morphological tessellation 0.206 12.62 8
Enclosed tessellation 0.201 11.92 8
ET transposed to block 0.202 14.53 6
ET transposed to H3 0.202 13.47 8
H3 basic 0.140 10.13 8

H3 with ET characters 0.222 13.47 8
Spatially constrained MT 0.080 6.73 15
Existing neighbourhoods 0.071 1.39 73
Existing districts 0.115 10.17 10
idealista polygons 0.075 1.42 69

comparison of how well segmentations capture variations in property prices: all

else being equal, larger areas will tend to have larger dispersions. By plotting

both the QCoD and the area of the spatial unit whose internal house price dis-

persion the QCoD records, a better judgement can be made about how well a

given segmentation captures variation in house prices given its area. Note that

in Figure 4.9, the dot for one type (the largest type in the spatially constrained

segmentation) is not displayed, as its area of 91.2km2 makes it an extreme outlier.

Because Figure 4.9 plots every type separately, it is difficult to make a clear

judgement about how well a segmentation performs overall. This is evident by

the spread of dots of the same colour in different areas of the chart: while one

type within a segmentation may have a low QCoD, this may be offset by other

types within the same segmentation having much greater dispersion. In order

to allow better judgements of the overall performance of segmentations, Figure

4.10 therefore plots the average areas of the types in each segmentation against

the corresponding average house price QCoDs, allowing the direct comparison

of each segmentation’s average values for these two metrics. The grey line plots

a simple linear regression model fit to the points on the graph. Although clearly

a poor predictor of the average QCoD of a given segmentation, the line serves

as a visual aid in understanding how well a segmentation can be seen to capture

house price dispersion, given the size of the units into which it partitions space
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Figure 4.9: Every type plot by house price QCoD and area.

(in this case, the different types). Segmentations plot below the line can be seen

to have lower levels of dispersion given the average areas of their types, and

therefore better capture variation in house prices. Conversely, segmentations

plot above the line can be seen to have higher QCoD values than might be ex-

pected given the average areas of their types, and therefore perform worse as a

delineation of housing submarkets.

It should be noted that this system of interpretation is not derived from any

particular empirical base, but rather the plots provide a useful heuristic for com-

paring the performance of segmentations which divide space into different num-

bers of units of different sizes.

4.2.2 Polygon metrics

Treating each type—each colour on the segmentation map—as the ultimate spa-

tial unit generated by the segmentation process is one way of assessing the seg-

mentations. Alternatively, each polygon produced can be seen as a separate spa-

tial unit: in this conceptualisation, areas which are assigned the same cluster
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Figure 4.10: Segmentation averages of typologies plot by house price QCoD and area.

label—the same colour on the map—but are located in different parts of the city

will be counted as separate units.

Table 4.2 shows the average results of the same statistics as Table 4.1 for the

same segmentations, but calculated at the polygon level rather than the type

level.

As a generality, the smaller a unit is, the fewer house price data points it is

likely to contain: larger units are therefore generally more robust when calcu-

lating the QCoD, and types more robust than polygons. Because many of the

polygons have very small areas (notably those composed of a single or very few

MT or ET cells), many contain few cadastral parcels with attached house price

information: of the 3,721 polygons into which the ten segmentations examined

here are divided3, 1,732 (46.5%) correspond to fewer than ten house price data

points, including 632 (17%) with no corresponding cadastral parcels. Figure 3.8
3Seven novel and three existing.
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demonstrates that there is also a geographical pattern to this validation data,

meaning that certain kinds of types and polygons are more likely to have few

or no relevant data from which to calculate the QCoD.

This makes a calculation of the QCoD for house prices within these polygons

at best not robust and at worst impossible. For this reason, the averages shown

in Table 4.2 and plot in Figure 4.12 exclude polygons containing fewer than ten

house price data points. As these polygons only contain a few cadastral parcels

which are geographically proximate and therefore likely also numerically prox-

imate in terms of average house price, their QCoD is likely to be low: there is

likely to be minimal dispersion in an area containing only a few properties. In-

cluding these polygonswould therefore haveweighted the averageQCoD values

to suggest lower levels of dispersion, but only on the grounds of including many

small polygons, which would likely not be seen as constituting distinct housing

submarkets. A version of Figure 4.12 which does not exclude these polygons in

its calculations is provided in Appendix A as Figure A.1.

The polygon area distribution boxplots are again shownalongside the average

area value, but the range for these has been artificially truncated: values (all out-

liers) larger than 18km2 are beyond the range of the plot. Because the types and

polygons for the spatially constrained segmentation are identical (since spatial

contiguity is a condition of the clustering process, so the types it generates cannot

bemultipart geometries4), the 91.2km2 type discussed previously is also counted

as a polygon5. If plottedwith a range inclusive of this polygon, themajority of the

other boxplots would be rendered illegible, so for this reason the range is limited.

The different units represented in the two tables is evident when comparing

the ‘Number of units’ column in each table: in Table 4.1 this reports the number of

types (eight for the enclosed tessellation segmentation; the samewhen it is trans-

posed to theH3geometry), while in Table 4.2 this reports the number of polygons
4Except in the few cases where the city boundary itself contains separate geometries, such as

islands.
5Or to be more precise, the large majority of the type is counted as a polygon: as can be seen

in Figure 4.7, it also encompasses two islands (one literal and one figurative), which are counted
as separate polygons.
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Table 4.2: Average polygon values for each segmentation.

Type area (km2)
Segmentation Mean QCoD Mean Distribution Number of units

Morphological tessellation 0.076 0.79 119
Enclosed tessellation 0.067 0.24 311
ET transposed to block 0.066 0.26 322
ET transposed to H3 0.074 0.45 206
H3 basic 0.071 0.53 116

H3 with ET characters 0.075 0.97 81
Spatially constrained MT 0.080 8.71 11
Existing neighbourhoods 0.071 1.36 73
Existing districts 0.115 9.90 10
idealista polygons 0.073 1.26 68

(1,666 for the enclosed tessellation segmentation; reducing to 249 when this is

transposed to the H3 geometry). This difference is also reflected in the areas of

the units: polygons tend to be much smaller than the types to which they belong.

Because the types and polygons of the existing spatial units (neighbourhoods,

districts, and idealista polygons) are spatially coterminous (their types include

few or nomultipart geometries), they show the fewest changes when comparing

types with polygons.

Figure 4.11 replicates Figure 4.9, but reporting the values for polygons andnot

types. In order to more clearly show the spread of values, the area of polygons

is mapped to the x-axis logarithmically: as shown in the axis label, each axis tick

multiplies by a factor of ten (0.1 km2, 1 km2, 10 km2, etc). This is made necessary

by the distribution of areas among the polygons being examined: while there

are a few notable polygons with large areas6, there are many with very small

areas. 53.4% of polygons are smaller than 0.01 km2 (10,000 m2, or about the size

of Liverpool’s Abercromby Square) and 34.2% of polygons are smaller than 0.001

km2 (1,000 m2, or about a twelfth the size of a block in the Eixample).

6Of the 3,721 polygons into which the ten segmentations examined here are divided, 185 (5%)
have an area of more than 1 km2; 32 (0.86%) have an area of more than 5 km2; and 16 (0.43%)
have an area of more than 10 km2.
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Figure 4.11: Every polygon plot by house price QCoD and area.

Figure 4.12 replicates Figure 4.10, but again reporting the values for polygons

and not types.
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Figure 4.12: Segmentation averages of polgyons plot by house price QCoD and area.
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Discussion

This chapter discusses in greater depth the results presented in the previous

chapter, explaining these results and their implications.

Broadly, the discussion focuses on the two key concerns of the dissertation:

the creation of spatial segmentations which reflect the urban morphology of

a city, and the creation of spatial segmentations which can be used as spatial

housing submarkets. Certain measures and evaluations of the segmentations

focus on one or the other of these concerns—for instance the QCoD assesses

solely the segmentations’ suitability to represent housing submarkets—while

other assessments of the segmentation are germane to both concerns. Many

of the key findings are of a methodological nature, demonstrating the ways in

which altering certain elements of the methodology affects the segmentation

produced. These methodological findings often correspond to limitations in the

research, and more broadly in the methodology employed.

5.1 Creating spatial segmentations to reflect housing
submarkets

As reported in the previous chapter, the QCoD allows the degree to which seg-

mentations capture variation in house prices to be quantified, allowing compar-
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isons between different segmentations to be made on this criterion.

The similar type-level average QCoD values for the MT, ET, ET transposed

to H3, and ET transposed to block segmentations (see Figure 4.10) suggest that

transposing to the H3 or block geometry has minimal effect on the degree of

house price variation captured by the segmentation. This kind of transposition

may therefore be a good way to reduce the ‘fragmentary’ nature of the segmen-

tation and ‘clean up’ its geometry to a certain extent, without damaging its per-

formance with regards to delineating housing submarkets.

Figure 4.10 also highlights the difficulties of making direct comparisons be-

tween segmentationswhichdivide an area into a different number of units and/or

units with different areas. The existing neighbourhoods and idealista polygons

have lower QCoDs than any of the novel segmentations, but they also have sig-

nificantly lower average type areas and a higher number of types, and so to

some extent this should be expected. Interestingly, judging solely on the metrics

shown in Figure 4.10 could lead to the conclusion that the spatially constrained

segmentation performs very well; however the geographical distribution of its

clusters (see Figure 4.7) means that the segmentation would likely be of little

use in practice.

A comparison of Figure 4.10 and Figure 4.12 highlights the different conclu-

sions reached when different spatial units (the type and polygon) are used as

the basis for analysis. While the positions of segmentations on each chart varies,

certain key trends are true of both. Both demonstrate the general relationship

between average unit area and average unit QCoD, and in both most of the novel

segmentations form a cluster of relatively similar values, suggesting relatively

small differences between the performances of these segmentations on the met-

rics plotted on these charts1.

1The notable exceptions are the spatially constrained segmentation, an exception in both type
and polygon analyses; and H3 ‘basic’, an exception in the type analysis due primarily to its
relatively low average type area.
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5.2 Creating coherent spatial segmentations

5.2.1 Fragmentary segmentations

Throughout the process of producing spatial segmentations, one issue encoun-

tered was that the spatial units generated were fragmentary and had limited spa-

tial contiguity. When using the GMM algorithm to cluster base spatial units, the

clustering algorithm has no knowledge of the topological relationships between

the cells it is clustering, and as such there is no guarantee that any segmenta-

tions produced will be contiguous. The fragmentary kinds of segmentations

produced by such clusterings cannot be seen to accurately represent either urban

morphology or housing submarkets: although the specific details may differ

dependent on the conceptualisation and scale of either of these areas, both are

certainly larger than the tessellation cells used in ET/MT-based segmentations.

Hence, a segmentation which assigns an individual ET/MT cell different cluster

labels to all of its neighbours can be seen to have failed to adequately delineate

either urban tissues or housing submarkets: in this resultant segmentation, the

single tessellation cell will be classed as a distinct polygon, but will not by any

reasonable measure be representative of the concepts it seeks to represent.

An argument could be made that, while using the ‘polygons’ of the segmen-

tation makes more conceptual sense when using the segmentations to represent

housing submarkets, different types of urban morphology may be better concep-

tually aligned with the ‘types’ of the segmentation, and therefore fragmentary

segmentations are less problematic when classifying urban morphology.

5.2.2 Limiting fragmentary segmentationswith contextual char-
acters

As explained in the Methodology, an imperfect solution to the problem of frag-

mented segmentations is the use of contextual characters constructed by averag-

ing the values of nearby cells. Indeed, these are incorporated into all segmen-

tations presented in the previous chapter (save that which stipulated a spatial
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Figure 5.1: The effect of an otherwise identical segmentation on contextual characters
constructed using different order spatial weights. From left to right: no contextual
characters; 1st order spatial weight, up to 3rd order spatial weight, up to 5th order spatial
weight.

constraint). Figure 5.1 demonstrates the difference that changing the neighbour

criteria when generating contextual characters makes to the final segmentation.

While vague spatial patterns can be discerned, the clustering using only the pri-

mary characters of each cell (on the far left) is far too fragmented to offer a

useful segmentation of either urban morphology or housing submarkets. The

subsequent maps plot segmentations identical in all factors save the neighbour

criteria used to generate the contextual characters, showing clusterings based

on contextual characters built using neighbours up to a topological distance of

one, three, and five.

Besides acting simply as a methodological tool to create cleaner segmenta-

tions, contextual characters also serve a conceptual role. The central reason that

the segmentation using only primary characters is too fragmented to be of any

practical use is that the tessellation cells clustered (aspatially, with GMM) hold

no information about their ‘surroundings’. The urban morphology of a given

tissue cannot, however, be defined based only on one building (or tessellation

cell). Accordingly, the contextual characters serve to partially determine the

scale of the areas demarcated in the resultant segmentation: the wider the range

of neighbours included in the contextual characters, the larger (in general) the

polygons in the resultant segmentation will be.

The choice of topological distance used to determine the contextual characters

should therefore also reflect the expected scale of an urban tissue. To give an

53



5. Discussion

intentionally extreme example, it would not make sense to have contextual char-

acters which averaged the character values of all cells within three kilometres,

since themorphometric characters of a location three kilometres away should not

be thought of as having any influence on the urban morphology of the primary

cell, or the urban tissue to which it belongs. Thus, when employing contextual

characters in this way there is a trade-off to be made between the breadth of

contextual information included (and the concomitant degree of smoothing this

produces) and the amount of granularity lost in the final segmentation. For each

additional order of topological distance included as a neighbour in the contextual

characters, the segmentation loses the ability to discern smaller urban tissues.

5.2.3 Limiting fragmentary segmentations by transposing onto
different geometries

An alternate approach to the issue of fragmentary segmentations is to carry out

the established methodology to generate a spatial segmentation using the cho-

sen tessellation with small base spatial units, and subsequently transpose the

segmentation generated onto a coarser geometry. This is demonstrated in this

dissertation by transposing the clusters produced in the ET segmentation onto

the block and H3 geometries (see Figures 4.3 and 4.4).

By aggregating the cluster labels to larger geometries it is ensured that none

of the resulting segmentation’s distinct spatial units (i.e. ‘polygons’) are smaller

than the cell in these larger geometries (i.e. the block or H3 cell). This is reflected

in plots such as Figure 4.11, which shows that very small polygons (those with

areas of less than 0.01 km2) are almost entirely the preserve of the MT and ET

segmentations (plotted in lilac and light blue respectively). As expected, the

transposed segmentations are somewhat ‘smoothed’: because the transposition

process (as described in theMethodology) assigns each block/H3 cell the cluster

label which covers the largest proportion of its area, smaller ‘outlier’ geometries

(such as solitary ET/MT cells) are usually erased from the segmentation, ‘clean-

ing’ the output.
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5.3 Creating spatial segmentations fromdifferent base
spatial units

5.3.1 H3

The effects of using different base spatial units are not limited to the geometries

of the segmentations produced. When different spatial units are used as an input

to the clustering, substantially different segmentations are produced, even when

using the same set of characters. This can be most clearly seen by comparing the

segmentation which transposes the labels from the ET segmentation to the H3

geometry after clustering (shown in Figure 4.4) with that which transposes the

charactersgeneratedwith ET segmentation to theH3 cells before clustering (shown

in Figure 4.6). The two differ only subtly in their methodology—the former uses

the enclosed tessellation cells as data points when clustering, while the latter

uses H3 cells—but the resultant segmentations are markedly different. While

both distinguish between certain broadmorphological variations (classifying the

dense Eixample as distinct from the more rural Northwest or the industrial area

at the South of the city), the clustering performed using ET cells much better

captures morphologically homogeneous areas. For instance, the Eixample and

Ciutat Vella are both more tightly and accurately delineated in the ET clustering

than in the H3 equivalent.

An explanation for this may be that the use of H3 changes the density of

cells (i.e. rows input to the GMM clustering). Whereas the enclosed tessellation

containedmore cells per km2 in the denser old city than in the sparser rural areas

in the Northwest, a key design feature of the regular H3 grid is that it weights

each area equally in this respect: the number of cells per km2 remains consistent

irrespective of whether the square kilometre is in the densest area of the city

or the sparsest.

To some extent, using different base spatial units as inputs to the clustering

stage of the methodology can be thought of as changing the ‘weighting’ given

to different areas. When a clustering is performed on ET cells, the algorithm
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has more information2 about areas of the city which are by their nature more

information-dense. Conversely when a clustering uses H3 cells (or any other

regular grid), the ‘information density’ is uniform over space, meaning that as

many rows are dedicated to a square kilometre of undeveloped countryside as

are to a square kilometre of bustling city centre. The segmentations produced

using H3 cells (such as that shown in Figure 4.6) suggest that this misaligned in-

formation densitymay act as a limiting factor on the degree towhich the segmen-

tation is able to discern urban tissues. This echoes Arribas-Bel and Fleischmann’s

(2021) assertion that “choosing a spatial unit that does not closely match [the]

distribution [of urban fabric] will subsume interesting variation and will hide

features” (ibid, 7).

5.3.2 Morphological and enclosed tessellation

The segmentations produced using MT and ET cells present a good opportunity

for a comparison of the effects of these different base spatial units. It would be

expected, ex ante, that there is little difference between the two, as the units differ

in only small ways and are largely similar in their construction.

A key distinction between the two tessellations is that enclosed tessellation3

is not spatially exhaustive, discarding any enclosure (that is, a space enclosed by

drivable roads) which does not have a building within it. As the spatial segmen-

tation is intended to delineate housing markets, there is a clear theoretical basis

for discarding those spaces which do not contain any housing. Whilst this was

an intentional methodological choice (indeed, following prior non-exhaustive

segmentations produced by idealista), it may have had some undesirable effects.

A common issue is that when roads with two carriageways recorded in OSM

as separate lines are used to create enclosures, the middle strip (i.e. the central

reservation of the road in question) is discarded. This can then cause an artificial
2Literally more rows, and also a greater proportion of the total rows in the input data.
3In this dissertation that is: Arribas-Bel and Fleischmann’s original description of enclosed

tessellation does not remove any cells and notes that the spatial-exhaustiveness of the tessellation
is a key feature.
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Figure 5.2: Islands produced by enclosed tessellation.

barrier between cells when calculating the contextual characters, either making

the topological relationship with would-be neighbouring cells more indirect, or

isolating the cell(s) entirely. Figure 5.2 shows two examples of instances where

the use of enclosed tessellation has rendered certain groups of cells islands, topo-

logically disconnected from any surrounding units and therefore unable to incor-

porate the local morphology into contextual characters.

Arguably, there is some justification for having two-lane highways present a

greater conceptual barrier than the wall between two buildings, but the absolute

barrier effect found in the current implementation of ET is on balance too great.

A possible alternative would be to keep the ‘empty’ ET cells generated, ignoring

them when calculating morphometric characters based on information about

buildingswithin the cells, but allowing their use at the contextual character stage.

In this way the ‘empty’ ET cells would be assigned the average values of their

neighbours, and not act as an absolute barrier when calculating contiguity-based

spatial weights for contextual characters. Alternatively, an additional step could

be added, using the ET cells as the input to a further Voronoi tessellation. In this

way, any ‘empty’ spaces (those enclosures without buildings) would be divided

according to their nearest (non-empty) ET cell and appended to these cells, cre-

ating a spatially exhaustive tessellation based on enclosures and in which every
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cell contains a building.

5.4 Creating spatial segmentationswithdifferent clus-
tering algorithms

The results show that, while the segmentations generated are contingent on a

number of different parameters, the Gaussian Mixture Model clustering algo-

rithm used to produce the majority of segmentations is capable of building clus-

terings which accurately discern key urban tissues. The results of the segmen-

tation produced using Agglomerative Clustering in place of GMM highlight the

imperative role played by the choice of algorithm. Even when using identical

input data, different algorithms (evenwhen aiming to demarcate the same thing)

can produce vastly different clusterings.
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6
Conclusion

6.1 Summary of findings

In conclusion, this dissertation has developed a methodology to segment an ur-

ban area into different spatial units based on its urbanmorphology, and assessed

the degree to which these novel segmentations reflected both urbanmorphology

and housing market dynamics. A quantitative assessment was used to inves-

tigate the degree to which the segmentations produced captured variation in

house prices as a proxy for housing market dynamics: this highlighted the dif-

ferences between segmentations produced using different methodologies. This

form of assessment should only serve as an approximate guide to interpretation,

and unqualified conclusions should not be drawn on the basis of these results.

The primary contribution of this dissertation has beenmethodological. Through-

out the study, the effects of alternate methodologies has been examined and

discussed, leading to a number of key results. The dissertation found the use

of contextual characters (effectively spatial lags) to be essential to developing

spatially coherent segmentations. It was also shown that segmentations can be

made more ‘clean’ by ‘transposing’ the cluster labels from segmentations pro-

duced by clustering smaller base spatial units onto larger, simpler geometries,

with each unit (e.g. block or H3 cell) in these geometries labelled according
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to the cluster label which takes up the largest proportion of the cell’s area in

the original segmentation. The selection of base spatial unit has been found

to greatly affect the resultant segmentation, corroborating previous assertions

that the spatial unit should match the distribution of the variable of interest

when producing spatial clusterings of this nature. This finding also suggests

that the use of other base spatial units—such as regular grids—may hamper the

accurate spatial segmentation of a study area based on a (set of) variable(s). The

choice of clustering algorithm was also found to be crucial to the generation

of satisfactory segmentations: the substitution of one clustering algorithm for

another engendered extensive changes to the segmentations produced.

6.2 Further research

The number of parameters involved in a research methodology of this scope

is such that it is not possible to examine in detail the effect of changing every

possible variable; this dissertation has only focused on what may be some of

the most salient of these.

Future research could build upon these findings by expanding the study area,

testing the method using data from a range of cities, or indeed countries.

While this dissertation has focused on producing segmentations which accu-

rately delineate a city based on urban morphology, there is potential to further

refine these areas to ensure their suitability for use as delineating housing sub-

markets. This could be achieved by following the methodological improvements

proposed in the previous chapter, or by incorporating a further smoothing pro-

cess into the methodology.

There is potential for significant further investigation into the algorithm used

in the clustering process. For example, further exploring algorithms which in-

corporate spatial constraints, or making use of GMM’s ability to assign each dat-

apoint (i.e. tessellation cell) a probability of cluster membership. Additionally,
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the goodness-of-fit of the clusters these algorithms generate could be examined

with measures such as geosilhouettes (Wolf et al., 2021).

Perhaps one overriding issue in seeking to delineate clear and defined bound-

aries between different urban tissues and/or housing submarkets is that the defi-

nitions of both of these concepts are contested. This is by nomeans to suggest that

the approach/endeavour should be abandoned or that any attempt to delineate

such areas is futile, but rather to recognise that to do so it to create a ‘wrong’—but

potentially useful—simplification of these complex concepts. As is often the case,

the map’s clean lines belie the complexity of the areas they seek to represent.
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A
Additional Figures

The following are additional figures not essential to the primary narrative of the

dissertation, but which may be of interest as supplementary reference materials.

Table A.1 recreates Table 4.2, but does not exclude polygons containing fewer

than ten house price data points.

Figure A.1 recreates Figure 4.12, but again does not exclude polygons con-

taining fewer than ten house price data points. By comparing the two figures, it

is clear which segmentations included the most polygons with few correspond-

ing house price data points. For instance, the morphological tessellation seg-

mentation moves from far below the straight line to above it when these val-

ues are excluded.

Figure A.2 shows a segmentation produced using enclosed tessellation cells

and clustering primary characters (i.e each tessellation cell has no information

about its neighbours), while Figure A.3 shows a segmentation produced using

ET cells and clustering contextual characters incorporating information fromcells

up to 3rd order topological distance away.
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Table A.1: Average polygon values for each segmentation, all polygons included.

Type area (kmš)
Segmentation Mean QCoD Mean Distribution Number of units

Morphological tessellation 0.031 0.15 657
Enclosed tessellation 0.030 0.06 1666
ET transposed to block 0.061 0.23 412
ET transposed to H3 0.070 0.43 249
H3 basic 0.058 0.22 370

H3 with ET characters 0.066 0.57 188
Spatially constrained MT 0.080 5.61 18
Existing neighbourhoods 0.071 1.36 75
Existing districts 0.115 8.48 12
idealista polygons 0.075 1.33 74

Enclosed tessellationEnclosed tessellationEnclosed tessellationEnclosed tessellationEnclosed tessellationEnclosed tessellationEnclosed tessellationEnclosed tessellationEnclosed tessellationEnclosed tessellationEnclosed tessellationEnclosed tessellationEnclosed tessellationEnclosed tessellationEnclosed tessellationEnclosed tessellationEnclosed tessellation

ET transposed to blockET transposed to blockET transposed to blockET transposed to blockET transposed to blockET transposed to blockET transposed to blockET transposed to blockET transposed to blockET transposed to blockET transposed to blockET transposed to blockET transposed to blockET transposed to blockET transposed to blockET transposed to blockET transposed to block

ET transposed to H3ET transposed to H3ET transposed to H3ET transposed to H3ET transposed to H3ET transposed to H3ET transposed to H3ET transposed to H3ET transposed to H3ET transposed to H3ET transposed to H3ET transposed to H3ET transposed to H3ET transposed to H3ET transposed to H3ET transposed to H3ET transposed to H3

Existing districtsExisting districtsExisting districtsExisting districtsExisting districtsExisting districtsExisting districtsExisting districtsExisting districtsExisting districtsExisting districtsExisting districtsExisting districtsExisting districtsExisting districtsExisting districtsExisting districts

Existing neighbourhoodsExisting neighbourhoodsExisting neighbourhoodsExisting neighbourhoodsExisting neighbourhoodsExisting neighbourhoodsExisting neighbourhoodsExisting neighbourhoodsExisting neighbourhoodsExisting neighbourhoodsExisting neighbourhoodsExisting neighbourhoodsExisting neighbourhoodsExisting neighbourhoodsExisting neighbourhoodsExisting neighbourhoodsExisting neighbourhoods

H3 basicH3 basicH3 basicH3 basicH3 basicH3 basicH3 basicH3 basicH3 basicH3 basicH3 basicH3 basicH3 basicH3 basicH3 basicH3 basicH3 basic

H3 with ET charactersH3 with ET charactersH3 with ET charactersH3 with ET charactersH3 with ET charactersH3 with ET charactersH3 with ET charactersH3 with ET charactersH3 with ET charactersH3 with ET charactersH3 with ET charactersH3 with ET charactersH3 with ET charactersH3 with ET charactersH3 with ET charactersH3 with ET charactersH3 with ET characters

idealista polygonsidealista polygonsidealista polygonsidealista polygonsidealista polygonsidealista polygonsidealista polygonsidealista polygonsidealista polygonsidealista polygonsidealista polygonsidealista polygonsidealista polygonsidealista polygonsidealista polygonsidealista polygonsidealista polygons

Morphological tessellationMorphological tessellationMorphological tessellationMorphological tessellationMorphological tessellationMorphological tessellationMorphological tessellationMorphological tessellationMorphological tessellationMorphological tessellationMorphological tessellationMorphological tessellationMorphological tessellationMorphological tessellationMorphological tessellationMorphological tessellationMorphological tessellation

Spatially constrained MTSpatially constrained MTSpatially constrained MTSpatially constrained MTSpatially constrained MTSpatially constrained MTSpatially constrained MTSpatially constrained MTSpatially constrained MTSpatially constrained MTSpatially constrained MTSpatially constrained MTSpatially constrained MTSpatially constrained MTSpatially constrained MTSpatially constrained MTSpatially constrained MT

0.05

0.075

0.1

0 2 4 6 8

Mean polygon area (km2)

M
ea

n 
po

ly
go

n 
Q

C
oD

 o
f h

ou
se

 p
ric

e

Figure A.1: Segmentation averages of polgyons plot by house price QCoD and area.
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Figure A.2: Enclosed tessellation with primary characters.
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A. Additional Figures

Figure A.3: Enclosed tessellation with contextual characters generated using 3rd order
spatial weights.
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